BIOCHE 01760

The volume flows of electrolyte solutions across a horizontally mounted membrane

A. Ślęzak * and B. Turczyński

Department of Biophysics, Silesian Medical Academy, 19 Henryk Jordan Str., 41-808 Zabrze 8 (Poland)

(Received 18 December 1992; accepted in revised form 4 February 1993)

Abstract

The Kedem-Katchalsky-Zelman model equations for transmembrane transport in multicomponent ionic and heterogeneous solutions have been modified. The validity of this model for binary and ternary solutions was verified using a cell with a horizontally mounted membrane. In the cell, volume flux of HCl, KCl, H₂SO₄ and/or ammonia aqueous solutions was measured as a function of gravitational configurations. The experimental findings are interpreted in terms of a convective gravitational instability that reduces boundary layer dimensions and increases the permeability coefficient of the complex system: boundary layer/membrane/boundary layer. A concentration-gradient Rayleigh number is used in a mathematical model for the gravitationally sensitive membrane flux.

Keywords: Membrane tranport; Kedem-Katchalsky-Zelman model; Rayleigh-Taylor convective instability; Multicomponent electrolyte systems

Gravitational effects on transmembrane volume and solute fluxes of the nonelectrolyte solutions were reported in previous papers [1-6]. From these papers, the conclusion was drawn that the influence of the gravitational field on transmembrane transport manifests itself in Rayleigh-Taylor instability [1,2], asymmetry and amplification of osmotic and diffusive transport [3-6] and gravielectric effect [7]. These findings were interpreted in terms of a convective gravitational instability that reduces boundary layer dimensions and increases the permeability coefficient of the complex system: boundary layer/

In the present communication the results of experimental studies upon osmotic transport in a single-membrane system containing binary and ternary electrolyte solutions are described. This communication is a completion of the previous paper [6].

Studies of osmotic flows were carried out by means of methods of measurement that have been described in previous papers [1,4,6]. In the experiments, we used a Nephron membrane and aqueous HCl, H₂SO₄, KCl and/or ammonia. Suitable values of the permeability parameters of this membrane are listed in Table 1. No external

membrane/boundary layer. A model equation of the transport across a horizontally mounted membrane was presented in [6,7]. In this model a concentration-gradient Rayleigh number is used.

^{*} To whom correspondence should be addressed.

Table 1 Values of the Nephron membrane (σ, ω) and complex: boundary layer/Nephron membrane/boundary layer (σ^*, Ω) transport parameters for H_2SO_4 , HCl, KCl and ammonia. σ and σ^* denotes reflection coefficients; ω and Ω permeability coefficients. These parameters are defined by expressions listed in Table 1 in ref. [6]

Coefficient	Value of parameter				
	H ₂ SO ₄	HCI	KCI	Ammonia	
$\sigma (\times 10^2)$	0.11	0.08	0.04	0.01	
ω (mol/N per s) (×10 ⁹)	3.80	3.32	2.54	2.68	
σ^* (×10 ²)					
Configuration A	0.003	0.002	0.002	0.0004	
Configuration B	0.044	0.03	0.02	0.003	
Ω (mol/N per s) (×10 ⁹)					
Configuration A	0.21	0.10	0.05	0.78	
Configuration B	1.92	1.42	0.86	0.20	

mechanical stirring was used. Each experiment was performed for gravitational configurations of the membrane system: first, with water in the vessel above the membrane and the solution below (configuration A); second, with these positions reversed (configuration B).

Figures 1 and 2 depict experimental data for binary or ternary solutions in the cell membrane compartment opposite to the compartment filled with water. The results in Fig. 1 were obtained with solutions of fixed ammonia content and varying H₂SO₄ (curves 1 and 1*), HCl (curves 2 and 2*) and KCl (curves 3 and 3*) concentrations. For solutions containing 0.5 M ammonia, progressive addition of H₂SO₄, HCl or KCl increases the density from below that of water to a value above it. Fig. 2 gives results at constant H₂SO₄, HCl or KCl and variable ammonia concentrations. Here, progressive ammonia addition to 0.2 M H₂SO₄, 0.2 M HCl or 0.3 M KCl lowers the density from above that of water a value below it. In [1], the manner in which J_{ν} varies is related to the gravitational instability or stability of the boundary layers, i.e., if the experimental value of J_{ν} is low, the boundary layers are stable and, conversely, for high values of J_{v} , the layers are unstable.

The model equations for volume transmembrane transport [6,7] in a ternary electrolyte solutions transform to the following form

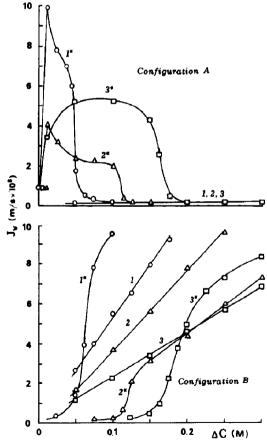


Fig. 1. Experimental volume flux across a cell membrane as a function of the concentration difference: H₂SO₄ (curves 1 and 1*), HCl (curves 2 and 2*) and KCl (curves 3 and 3*) for configuration A (upper) and B (lower). Plots 1, 2 and 3 – no ammonia, plots 1*, 2* and 3* – 0.5 M ammonia.

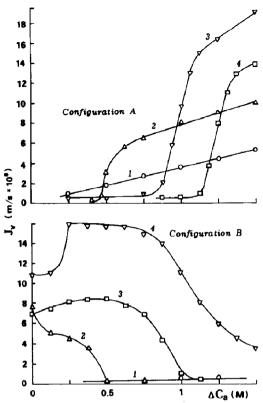


Fig. 2. Experimental volume flux across a cell membrane as a function of the ammonia concentration difference for configuration A (upper) and B (lower): (\bigcirc) no H₂SO₄, HCl and KCl, (\triangle) 0.2 M HCl, (∇) 0.2 M H₂SO₄, (\square) 0.3 M KCl.

$$J_{v} = \eta \left[\Delta P \pm RT \sum_{i=1}^{2} \frac{\Omega_{i}(C_{i})}{\omega_{i}} \zeta_{i} \sigma_{i} \Delta C_{i} \right]$$

$$\eta = L_{p} \left\{ 1 \mp \left(\prod_{i=1}^{2} \omega_{i} \right)^{-1} L_{p} \sum_{i=1}^{2} \sigma_{i} \overline{C}_{i} (\sigma_{i} - \sigma_{i}^{*}) \right\}^{-1}$$

$$(2)$$

$$\frac{\Omega_i(C_i)}{\omega_i} = \frac{1}{1 + 2RT\omega_i \left[\frac{R_c^* \nu}{g\left(\frac{\rho}{\rho_0} - 1\right)D_i^2}\right]^{1/3}}$$
(3)

where J_{v} is the volume flux, L_{p} the hydraulic conductivity of the membrane, ΔP the hydrostatic pressure difference, \overline{C} the average solute concentration, σ and σ^* the reflection coefficient of the membrane and complex: boundary layer/membrane/boundary layer, respectively, ΔC the concentration difference, ζ the Van't Hoff coefficient $(1 \le \zeta \le 2)$, RT the product of the gas constant and absolute temperature, ω and Ω the permeability coefficient of membrane and complex: boundary layer/membrane/ boundary layer, respectively, $R_{\rm c}^*$ the critical value of the concentration Rayleigh number, v the kinematics viscosity, g the gravitational acceleration, ρ and ρ_0 the density of solution and solvent, respectively, and D the diffusion coefficient.

Qualitative agreement only between experimental data and calculated results for $J_{\rm v}$ is obtained.

References

- 1 A. Ślęzak, K. Dworecki and J.E. Anderson, J. Membrane Sci. 23 (1985) 71.
- 2 A. Ślęzak, J. Membrane Sci. 26 (1986) 115.
- 3 A. Ślęzak and B. Turczyński, Stud. Biophys. 113 (1986) 37.
- 4 A. Ślęzak and B. Turczyński, Biophys. Chem. 24 (1986) 173.
- 5 A. Ślęzak, B. Turczyński and Z. Nawrat, J. Non-Equilib. Thermodyn. 14 (1989) 205.
- 6 A. Ślęzak, Biophys. Chem. 34 (1989) 91.
- 7 A. Ślęzak, Biophys. Chem. 38 (1990) 189.